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Abstract

The problem of constructing a parametric triangular patch to smoothly connect three surface patches is studied. Usually, these surface
patches are defined on different parameter spaces. Therefore, it is necessary to define interpolation conditions, with values from the given
surface patches, on the boundary of the triangular patch that can ensure smooth transition between different parameter spaces. In this
paper we present a new method to define boundary conditions. Boundary conditions defined by the new method have the same param-
eter space if the three given surface patches can be converted into the same form through affine transformation. Consequently, any of the
classic methods for constructing functional triangular patches can be used directly to construct a parametric triangular patch to connect
given surface patches with G1 continuity. The resulting parametric triangular patch preserves precision of the applied classic method.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Construction of surfaces plays an important role in
computer aided geometric design (CAGD), free-form sur-
face modeling and computer graphics (CG). To make the
process of constructing complex surfaces simple, piecewise
techniques are frequently used, with four-sided and trian-
gular patches being the most popular choices. This paper
studies the problem of boundary condition determination
in the process of constructing parametric triangular
patches to smoothly connect three given surface patches.
There are many methods for constructing a triangular
patch to connect the three ones. This paper only addresses
the problem of constructing a triangular patch to connect
three surfaces with any form, i.e. addresses the problem
of infinite interpolation on triangles.

The infinite interpolation on triangles was studied by
Barnhill et al. [1], and a curved triangular patch that inter-
polates the boundary conditions with any form was pro-
posed. The triangular patch is constructed using the
Boolean sum scheme. Gregory [2] used the convex combi-
nation method to construct a triangular patch. The trian-
gular patch is formed by the convex combination of three
interpolation operators, each of which satisfies the interpo-
lation conditions on two sides of a triangle. The idea [2]
was further extended by Gregory [3] and Charrot et al.
[4]. Nielson [5] presented a side-vertex method to construct
a curved triangular patch using combination of three inter-
polation operators, each satisfying the given boundary con-
ditions at a vertex and its opposite side. Hagen [6] extended
Nielson’s approach to construct geometric patches. These
results have been generalized to triangular patches with
first and second order geometric continuity [7,8]. The prob-
lem of constructing non-four-sided patches including
curved triangular patches was also studied in Refs. [9,10].
In Ref. [11] a method to construct a curved triangular
patch by combining four interpolation operators, an
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interior interpolation operator and three side-vertex opera-
tors [5], is presented. The constructed triangular patch
reproduces polynomial surfaces of degree four. Another
method proposed recently [12] constructs a triangular
patch by a basic approximation operator and an interpola-
tion operator. The constructed triangular patch satisfies C1

boundary condition and reproduces polynomial surfaces of
degree five.

The above-mentioned methods all work on the assump-
tion that the interpolation conditions on the boundary of
the triangle are defined on the same parameter space. How-
ever, in practice, this is usually not the case. It is therefore
necessary to have a method to determine suitable interpo-
lation conditions so that the methods mentioned in Refs.
[1–12] can be used directly to construct parametric triangu-
lar patches. In Ref. [11], a method is presented to construct
the cross-boundary conditions. The constructed cross-
boundary conditions have suitable magnitudes, but not
suitable directions on the boundary of the triangle. This
paper overcomes this problem by presenting a simple but
efficient method to construct cross-boundary conditions
which have both suitable magnitudes and directions. The
combination of the new method and the classic functional
triangular patch construction methods [1–12] can be used
to construct a G1 parametric triangular patch to connect
three surface patches. The constructed parametric triangu-
lar patch has the same interpolation precision as the classic
methods [1–12].

2. Problem description

Suppose Piðsi; tiÞ ¼ ðxiðsi; tiÞ; yiðsi; tiÞ; ziðsi; tiÞÞ, ð0 6 si; ti

6 1Þ; i ¼ 1; 2; 3; are three given surface patches, defined on
different siti-parametric planes. The three patches are of
any form, and meet in the way as shown in Fig. 1. The goal
is to construct a triangular patch PTðs; tÞ to connect the three
patches Piðsi; tiÞ; i ¼ 1; 2; 3, with G1 continuity. PTðs; tÞ and
Piðsi; tiÞ; i ¼ 1; 2; 3; being G1 continuous means that they
have a common boundary and the normal vectors of them
on the common boundary have the same direction.

If these three patches are defined on the same parametric
st-plane, then the methods for constructing functional tri-
angular patches can be used directly to construct a para-

metric triangular patch to connect these patches with C1

continuity. In most applications of CAGD, CG and related
areas, however, these three patches usually are not defined
on the same parameter space. In this case, one needs to
define C1 boundary conditions by the three patches so that
the constructed parametric triangular patch can smoothly
connect these patches with a ‘‘visually pleasing shape”

suggested by these three patches. After the C1 boundary
conditions are defined, the functional methods of con-
structing triangular patches can be used to construct
parameter triangular patch directly. Because PTðs; tÞ and
Piðsi; tiÞ; i ¼ 1; 2; 3, are defined on different parameter
spaces, PTðs; tÞ, satisfying C1 boundary conditions, will
connect these three patches with G1 continuity.

Let T be an equilateral triangle with vertices v1 ¼ ð0; 0Þ;
v2 ¼ ð1; 0Þ and v3 ¼ ð1=2;

ffiffiffi

3
p

=2Þ in the st-parametric space,
ei denote the opposite side of vi, and si be the unit outward
normal vector of ei (Fig. 2). Let r1 denote the unit vector
from v2 to v3. r2 and r3 are defined similarly. The sides
ei, i ¼ 1; 2; 3, can be parameterized as follows:

e1ðuÞ ¼ ð1� uÞv2 þ uv3;

e2ðuÞ ¼ ð1� uÞv1 þ uv3; 0 6 u 6 1

e3ðuÞ ¼ ð1� uÞv1 þ uv2;

ð1Þ

The parametric triangular patch PTðs; tÞ to be con-
structed will be defined on the equilateral triangle T, as
shown in Fig. 2. On the three sides of T, the boundary
curve and cross-boundary slope conditions given by the
three surfaces, Piðsi; tiÞ; i ¼ 1; 2; 3 are as follows:

PiðeiðuÞÞ;
oPi

osi
ðeiðuÞÞ; i ¼ 1; 2; 3 ð2Þ

where eiðuÞ; i ¼ 1; 2; 3 are defined in Eq. (1), PiðeiðuÞÞ and
oPi
osi
ðeiðuÞÞ denote the boundary value and the cross-bound-

ary slope of Piðsi; tiÞ on the side ei, respectively.
Because Piðsi; tiÞ; i ¼ 1; 2; 3 are defined on different

parameter spaces, and the boundary conditions (2) cannot
be used directly to construct the triangular patch PTðs; tÞ
on T, we will use them to define the new boundary condi-
tions. Let the new boundary conditions be

Fig. 1. Three surfaces with G1 continuity. Fig. 2. Three patches on T.
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PTðeiðuÞÞ;
oPT

osi
ðeiðuÞÞ; i ¼ 1; 2; 3 ð3Þ

There are many methods for defining the new boundary
conditions (3). Obviously, one reasonable choice is that
the conditions (3) should be defined in such a way that
satisfies the following conditions: if the three patches
Piðsi; tiÞ; i ¼ 1; 2; 3 are defined by the same surface
Pðs; tÞ, but with different parameter spaces whose boundary
conditions have linear relations between each other, then one
should find out the transformations to make sure that the
three Piðsi; tiÞ; i ¼ 1; 2; 3 are defined by the same surface
which is supposed to be Pðs; tÞ, so that PTðeiðuÞÞ;
oPT

osi
ðeiðuÞÞ; i ¼ 1; 2; 3 on the three sides of T in Fig. 2 can

be defined by Pðs; tÞ, i.e. by

PTðeiðuÞÞ ¼ PðeiðuÞÞ;
oPT

osi
ðeiðuÞÞ ¼ oP

osi
ðeiðuÞÞ;

i ¼ 1; 2; 3 ð4Þ

3. Constructing the boundary conditions

We now show how to determine PTðeiðuÞÞ, oPT

osi
ðeiðuÞÞ;

i ¼ 1; 2; 3. As shown in Fig. 3, suppose that the surface
patch P1ðs1; t1Þ is defined in the parallelogram region
v2v3v4v5; P2ðs2; t2Þ and P3ðs3; t3Þ are similarly defined.
The PTðs; tÞ should be defined so that it and Piðsi; tiÞ are

G1 continuous on the common boundary. Thus, PTðeiðuÞÞ,
oPT

osi
ðeiðuÞÞ; i ¼ 1; 2; 3 can be defined by Piðsi; tiÞ; i ¼ 1;

2; 3 as follows:

PTðeiðuÞÞ ¼ PiðeiðuÞÞ;
oPT

osi
ðeiðuÞÞ ¼ aiðeiðuÞÞ oPi

osi
ðeiðuÞÞ

þbiðeiðuÞÞ oPi
oti
ðeiðuÞÞ;

i ¼ 1; 2; 3 ð5Þ

where aiðeiðuÞÞ and biðeiðuÞÞ are functions of u to be con-
structed, respectively.

Now, constructing the boundary conditions becomes a
problem of defining the functions aiðeiðuÞÞ and biðeiðuÞÞ;
i ¼ 1; 2; 3. For simplicity, we shall only show the construc-
tion process of a1ðe1ðuÞÞ and b1ðe1ðuÞÞ only. The aiðeiðuÞÞ
and biðeiðuÞÞ; i ¼ 2; 3 can be constructed similarly.

Because vectors r1 and t1 are the same (Fig. 3), vectors s1

and t1 are orthonormal, and oPT

os1
ðe1ðuÞÞ and oPT

ot1
ðe1ðuÞÞ satisfy

oPT

os1

ðe1ðuÞÞ �
oPT

ot1

ðe1ðuÞÞ
� �

¼ 0

where ha � bi denotes the dot product of vectors a and b.
It follows from (5) that

A1a1ðe1ðuÞÞ þ B1b1ðe1ðuÞÞ ¼ 0 ð6Þ
where

A1 ¼
oP1

os1

ðe1ðuÞÞ �
oP1

ot1

ðe1ðuÞÞ
� �

B1 ¼
oP1

ot1

ðe1ðuÞÞ �
oP1

ot1

ðe1ðuÞÞ
� �

If s1 and t1 are orthonormal, A1 ¼
D

oP1

os1
ðe1ðuÞÞ � oP1

ot1

ðe1ðuÞÞ
E

¼ 0, then the function relation between a1ðe1ðuÞÞ
and b1ðe1ðuÞÞ is taken as

b1ðe1ðuÞÞ ¼ �A1a1ðe1ðuÞÞ=B1 ð7Þ
Eq. (7) shows that if b1ðe1ðuÞÞ is defined, then a1ðe1ðuÞÞ is

defined. In what follows we will show how to construct
b1ðe1ðuÞÞ. We first determine the values of a1ðe1ðuÞÞ and
b1ðe1ðuÞÞ at points v2 and v3, respectively. At point v2, we
have

oPT

os1

ðv2Þ ¼ a1ðv2Þ
oP1

os1

ðv2Þ þ b1ðv2Þ
oP1

ot1

ðv2Þ ð8Þ

The angle h1 between vectors s1 and t3 is 30o, thus

oP3

ot3

ðv2Þ ¼
ffiffiffi

3
p

2

oPT

os1

ðv2Þ �
1

2

oPT

or1

ðv2Þ

From

oPT

or1

ðv2Þ ¼
oP1

ot1

ðv2Þ

we have

oPT

os1

ðv2Þ ¼
2
ffiffiffi

3
p

3

oP3

ot3

ðv2Þ þ
ffiffiffi

3
p

3

oP1

ot1

ðv2Þ ð9Þ

It follows from Eqs. (8) and (9) that a1ðv2Þ and b1ðv2Þ in Eq.
(5), denoted by a0

1 and b0
1, can be determined by the follow-

ing equations:

oP1

os1

ðv2Þ �
oP1

os1

ðv2Þ
� �

a0
1 þ

oP1

ot1

ðv2Þ �
oP1

os1

ðv2Þ
� �

b0
1

¼ oPT

os1

ðv2Þ �
oP1

os1

ðv2Þ
� �

oP1

os1

ðv2Þ �
oP1

ot1

ðv2Þ
� �

a0
1 þ

oP1

ot1

ðv2Þ �
oP1

ot1

ðv2Þ
� �

b0
1 ¼ 0

ð10Þ

On the other hand, at v3 we have

oPT

os1

ðv3Þ ¼ a1ðv3Þ
oP1

os1

ðv3Þ þ b1ðv3Þ
oP1

ot1

ðv3Þ

oPT

os1

ðv3Þ ¼ �
2
ffiffiffi

3
p

3

oP2

ot2

ðv3Þ �
ffiffiffi

3
p

3

oP1

ot1

ðv3Þ
ð11Þ

Thus, a1ðv3Þ and b1ðv3Þ in Eq. (5), denoted by a1
1 and b1

1,
can be determined by the following equations:Fig. 3. Three patches on T.
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oP1

os1

ðv3Þ �
oP1

os1

ðv3Þ
� �

a1
1 þ

oP1

ot1

ðv3Þ �
oP1

os1

ðv3Þ
� �

b1
1

¼ oPT

os1

ðv3Þ �
oP1

os1

ðv3Þ
� �

oP1

os1

ðv3Þ �
oP1

ot1

ðv3Þ
� �

a1
1 þ

oP1

ot1

ðv3Þ �
oP1

ot1

ðv3Þ
� �

b1
1 ¼ 0

ð12Þ

For aðe1ðuÞÞ, two values a0
1 and a1

1 are computed, thus a
suitable choice is that a1ðe1ðuÞÞ is defined by a linear inter-
polation as follows:

a1ðe1ðuÞÞ ¼ ð1� uÞa0
1 þ ua1

1 0 6 u 6 1 ð13Þ
where a0

1 and a1
1 are defined by (10) and (12).

Based on (7) and (13), a1ðe1ðuÞÞ and b1ðe1ðuÞÞ are
defined by

a1ðe1ðuÞÞ ¼ ð1� uÞa0
1 þ ua1

1

b1ðe1ðuÞÞ ¼ �A1a1ðe1ðuÞÞ=B1 0 6 u 6 1
ð14Þ

where A1 and B1 are defined by (6).
Similarly, one can define aiðeiðuÞÞ and biðeiðuÞÞ for

i ¼ 2; 3 as follows:

a2ðe2ðuÞÞ ¼ ð1� uÞa0
2 þ ua1

2

b2ðe2ðuÞÞ ¼ �A2a2ðe2ðuÞÞ=B2 0 6 u 6 1

a3ðe3ðuÞÞ ¼ ð1� uÞa0
3 þ ua1

3

b3ðe3ðuÞÞ ¼ �A3a3ðe3ðuÞÞ=B3

ð15Þ

The above construction process of C1 boundary condi-
tions shows that when the methods for constructing C1

functional triangular patches are directly applied to the
boundary conditions in Eq. (5), a parameter patch
PTðs; tÞ is constructed, which connects Piðsi; tiÞ, i ¼ 1; 2; 3
with G1 continuity and smooth shape.

4. Discussion

In this section, we will show that the cross-boundary
slopes defined by Eqs. (5), (14) and (15) are well defined.
To do this, we only need to prove that if the three sur-
faces Piðsi; tiÞ; i ¼ 1; 2; 3 are defined by the same sur-
face Pðs; tÞ but in different forms, which are formed by
applying affine transformations on Pðs; tÞ, then the new
boundary conditions are defined by (4), i.e. by Pðs; tÞ.
This means that if a method reproduces polynomials of
degree n when it is used to construct functional triangu-
lar patches, then when it is used with the boundary con-
ditions (5) to construct a parametric triangular patch
PTðs; tÞ, PTðs; tÞ will reproduce parametric polynomials
of degree n.

Theorem 1. If surface patches Piðsi; tiÞ; i ¼ 1; 2; 3; are

defined by the same surface Pðs; tÞ, i.e. Pðs1; r1Þ, and the

transformations from coordinate system st to coordinate

system siti are affine, then there exist unique constants ci and

di satisfying the following conditions:

ai ¼ 1=ci

bi ¼ �di=ci
ð16Þ

where ai and bi satisfy aiðeiðuÞÞ ¼ ai and biðeiðuÞÞ ¼ bi,
which means that aiðeiðuÞÞ and biðeiðuÞÞ in Eq. (5) are con-
stants in this case.

Proof. Only the case i ¼ 1 will be considered. The other
two cases can be handled similarly. Let V be any point in
parametric space, in s1r1 and s1t1 coordinate systems, the
coordinates of V be ðs1; r1Þ and ðs1; t1Þ, respectively.
Because the transformation from coordinate system st to
coordinate system s1t1 is affine, vectors s1 and t1 are the
same, as shown in Fig. 3, the relationship between ðs1; r1Þ
and ðs1; t1Þ can be written as

s1 ¼ c1s1

r1 ¼ d1s1 þ t1

ð17Þ

As Piðs1; t1Þ is defined by Pðs1; r1Þ, it follows from Eq. (17)
that P1ðs1; t1Þ can be expressed as

P1ðs1; t1Þ ¼ Pðc1s1; d1s1 þ t1Þ ¼ Pðs1; r1Þ
Now

oP1ðs1; t1Þ
os1

¼ c1

oPðs1; r1Þ
os1

þ d1

oPðs1; r1Þ
or1

oP1ðs1; t1Þ
ot1

¼ oPðs1; r1Þ
or1

Thus

oPðs1; r1Þ
os1

¼ 1

c1

oPðs1; t1Þ
os1

� d1

c1

oPðs1; t1Þ
ot1

oPðs1; r1Þ
or1

¼ oPðs1; t1Þ
ot1

This completes the proof of the theorem. h

In CAGD and CG applications, the curves and surfaces
are generally defined on normalized domains, [0,1] for
curves and ½0; 1� � ½0; 1� for surfaces. In most cases, the
domains of curves and surfaces are normalized by affine
transformations. Thus, in Theorem 1, that the transforma-
tion from Pðs; tÞ to Piðsi; tiÞ; i ¼ 1; 2; 3 are restricted as
affine transformation is reasonable. Theorem 1 shows that
if surfaces Piðsi; tiÞ; i ¼ 1; 2; 3, are defined by the same
surface, then a0

1 and b0
1 in Eq. (10) and a1

1 and b1
1 in Eq.

(12) satisfy a0
1 ¼ a1

1 and b0
1 ¼ b1

1, and so the functions
aiðeiðuÞÞ and biðeiðuÞÞ in Eq. (5), i ¼ 1; 2; 3 are uniquely
determined, i.e. determined by Eq. (4). Consequently, the
interpolation conditions are determined uniquely, and the
triangular patch to be constructed is determined uniquely.
Therefore, the following theorem follows.

Theorem 2. If the method of constructing functional

triangular patch reproduces polynomials of degree n, and

the method is directly applied on the interpolation condi-
tions in Eq. (5), then the constructed parametric triangular

patch PTðs; tÞ reproduces parametric polynomials of

degree n.
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5. Experiment

Experimental results presented in this section are carried
out by constructing a parametric triangular patch to con-
nect three patches or to interpolate the G1 interpolation
conditions on the sides of the triangle. The first experiment
is to construct a triangular patch to connect three surfaces,
Piðsi; tiÞ, ð0 6 si; ti 6 1Þ, i ¼ 1; 2; 3 (Fig. 4). The triangular
patches in Fig. 5 will be produced by Nielson’s method
[5]. In Fig. 5, the triangular patch in (a) is produced by
directly applying Nielson’s method [5] on the boundary
curves and cross-boundary slopes defined by the three rect-
angular patches. The triangular patches in (b) and (c) are
produced by using the method presented in Ref. [13] and
the technique presented in this paper, respectively, to rede-
fine the cross-boundary slopes taken from the three given
rectangular patches, and then apply Nielson’s method [5]
on the boundary curves and the redefined cross-boundary
slopes. In Fig. 5, some portions of the surfaces on the com-
mon boundary of the triangular patch with the three rect-
angular patches are visually not very smooth. This is the
result of Mach band phenomenon. The surfaces in (c) have
less Mach band phenomenon than those of (b).

Highlight lines [14] have been proved to be an effective
tool in assessing the quality of a surface. In Fig. 6, the high-
light line model is used to compare the above three meth-
ods. Fig. 6 gives the highlight lines of the horizontal
fillets of the surfaces in Fig. 5. which shows that the new
method gets better results than the other two methods.

The second experiment is to compare the new method
using the six functions presented by Frank [15]. The six
functions are expressed by the following parametric form

F 1ðu; vÞ ¼ 3:9 exp½�0:25ð9u� 2Þ2 � 0:25ð9v� 2Þ2�
þ 3:9 exp½�ð9uþ 1Þ2=49� ð9vþ 1Þ=10�
þ 2:6 exp½�0:25ð9u� 7Þ2 � 0:25ð9v� 3Þ2�
� 1:04 exp½�ð9u� 4Þ2 � ð9v� 7Þ2�

F 2ðu; vÞ ¼ 5:2 exp½18v� 18u�=ð9 exp½18v� 18u� þ 9Þ
F 3ðu; vÞ ¼ 5:2½1:25þ cosð5:4vÞ�=½6þ 6ð3u� 1Þ2�
F 4ðu; vÞ ¼ 5:2 exp½�81ððu� 0:5Þ2 þ ðv� 0:5Þ2Þ=16�=3

F 5ðu; vÞ ¼ 5:2 exp½�81ððu� 0:5Þ2 þ ðv� 0:5Þ2Þ=4�=3

F 6ðu; vÞ ¼ 5:2sqrt½64� 81ððu� 0:5Þ2 þ ðv� 0:5Þ2Þ�=9� 2:6

xðu; vÞ ¼ u
yðu; vÞ ¼ v

ð18Þ

Fig. 4. Connection of three surfaces through a triangular patch.

Fig. 5. Triangular patches produced by (a) Nielson’s method; (b) Zhang’s method and (c) our method.

Fig. 6. The highlight lines of the horizontal fillets of the surfaces in Fig. 5.
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The set of data points (including 33 points) presented in
Ref. [15] is used to produce triangles for comparison. The
triangulation of the data set is performed by two steps.
First, the data set is projected to xy plane, then the data
set on xy plane is triangulated using the max-min criterion
proposed by Lawson [16] (Fig. 7). The boundary curves of

3D triangles are defined by ðx; y; F iðx; yÞÞ, 1 6 i 6 6, where
ðx; yÞ is the point on the side of the triangles in Fig. 7,
F iðx; yÞ is obtained by replacing ðu; vÞ in F iðu; vÞ (18) with
ðx; yÞ.

The interpolation conditions for the test cases are as
mentioned boundary curves and cross-boundary slopes
on the 3D triangles, taken from F 1ðu; vÞ to F 6ðu; vÞ above.
Let S be a side of the 3D triangles, the interpolation condi-
tions on S are normalized by defining them on the unit
region, i.e. on the region [0, 1]. The cross-boundary slopes
on S are defined by oF iðu;vÞ

on
� L, where L denotes the length

of S, n denotes the out normal vector of S, 1 6 i 6 6. Based
on the interpolation conditions on the 3D triangles, the
comparison is carried out by applying the new method to
the method [12] to construct surfaces. The comparison
results are shown in Figs. 8–10, respectively. In Figs. 8–
10, for 1 6 i 6 6, the surface (a) F iðu; vÞ is produced by
using formula (18), the surface (b) F iðu; vÞ is produced with
the method [12] by directly using the interpolation condi-Fig. 7. Triangulation of 33 points.

Fig. 8. Plots of F 1ðu; vÞ and F 2ðu; vÞ.
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Fig. 9. Plots of F 3ðu; vÞ and F 4ðu; vÞ.

Fig. 10. Plots of F 5ðu; vÞ and F 6ðu; vÞ.
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tions, while the surface (c) F iðu; vÞ is produced with the
method [12] by the boundary curves, and the cross-bound-
ary conditions which are redefined by the new method. We
can see that the surfaces (a) F iðu; vÞ and (b) F iðu; vÞ visually
have no difference.

We have done the comparison by replacing the method
[12] with Nielson’s method [5], the test results are that: (1)
for these interpolation conditions, Nielson’s method can-
not produce better surfaces; (2) when the new method is
applied on the Nielson’s method, the quality of the surfaces
constructed is improved.

6. Conclusion

A new method has been proposed, which uses functional
triangular patch construction method to construct para-
metric triangular patches. Our study has shown that the
new method improves previous methods in both surface
shape and surface quality, which is verified by examining
Mach band effect and highlight line models of the resulting
surface patches. The key in achieving the improvement is a
technique to define the cross-boundary conditions. The
resulting cross-boundary conditions have not only suitable
magnitudes but also suitable directions.

With the new method, one can directly apply any of the
classic functional triangular patch construction methods to
construct a C1 parametric triangular patch to smoothly
connect three surface patches. The new method preserves
precision of the classic methods. If the applied classic
method has a precision of polynomials of degree n, then
the constructed parametric triangle patches have a preci-
sion of parametric polynomials of degree n.
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